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Abstract—Fault attacks on the hardware are now common to
extract valuable information from a device. The most used means
is the electromagnetic perturbation. Designers have to verify how
robust are their designs against this kind of attack. We designed
a prediction tool that generates mutants according to a fault
model and then checks security properties on the mutants. We
improved the generation of mutants at the instruction level and
at the function level to reduce the evaluation time. we reduce that
number between 32% and 84% according to the fault model.

Index Terms—Fault Injection, Prediction, Pruning heuristic

I. INTRODUCTION

Fault Injection (FI) is a classical technique used since the
60s [1]. The original aim was to evaluate the effect of cosmic
radiation on the embedded equipment in a space environment.
It consists to observe the behavior of a system in presence
of faults which are defined thanks to a fault model. At the
beginning, FI was applied on hardware components and now
it is applied on the complete system. It becomes mandatory to
verify how security software behave in presence of intentional
fault injection.

The defender needs to predict the effect in order to evaluate
the potential effects of the attack on the hardware. On the
other side, if the attacker has access to the binary, she can
target the valuable part to be attacked. We demonstrated in [2],
the possibility to generate buffer overflow even in presence of
canary, control flow hijacking, back-door activation or Return
Oriented Programming (ROP) exploit execution.

Our contribution in this paper is to generate in an efficient
way a prediction of the fault effect. Each instruction is mutated
according to a fault model. A pruning algorithm is used to
reduce the number of mutant code. We evaluate this approach
on real code and we verify them on our FI platform. This paper
is organized as follows. Section II presents pour motivation
and the context of this work. SectionIII describes the fault
models considered in this work. The contribution is developed
in section IV in two parts, the generation of the mutant
instruction and its optimization and then the heuristics at the
function level. We evaluate our work in section V and we
describe the evaluation bench insection VI. Finally, we present
related works in section VII.

II. MOTIVATION

Faults are events in circuit operation that occur for a short
time period. A fault induces an error which in turn can lead the

system into an undesirable state from a functional or security
point of view. The effect of this event can modify the behavior
of the computer but it can also modify the content of a memory
cell, a register used into a computation or a data/instruction on
the bus during its transit from memory to register. The stored
code in memory is not the executed one under fault attack.
The semantics of the program changes and the entire program
should be verified to prevent it.

One of the solutions is to simulate by software the fault
behavior, thus requiring to have a precise model of the
fault effect and a precise description of the hardware. Fault
simulators try to estimate through a fault model the effect of
fault on the software. The challenges are related to precisely
model the effect of the fault on the hardware and to manage
the combinatorial explosion of states if one wants to evaluate
all the possibilities. At the hardware level the fault can be as
precise as a bit flip or can impact more elements like several
byte at the same time.

The major drawback of simulation tools is related to the
state space problem. Tools can enumerate all the possible
faults leading to different mutant programs. Unfortunately the
number of different FI is huge and most of the time generates a
no effect behavior. Then the tool must verify if some properties
are valid or not on all the mutants.

We developed a complete tool chain to verify if a given
program can invalidate security properties under fault attacks.
In [4], we already presented the verification process of the
mutants. Firstly the security properties are meshed with the
source code as annotations and the corresponding binary is
generated. A golden run verifies if the properties hold in
nominal mode. From the initial binary, we generate a set of
mutant according to the fault model. The executable binary
is transformed into an intermediate representation in Low
Level Virtual Machine Intermediate Language (LLVM-IR).
This model is checked using the Low Level Bounded Model
Checker (LLBMC) to verify if it satisfies the properties or
not. The SimFI tool is used to automatically generate the
mutant binaries by injecting faults into the executable binary
according to the chosen fault model.

The initial SimFi tool had a naive design and generate too
much mutants that were not meaningful binaries. We focus
in this paper in a new generation of the mutant generation
process. This new mutant generator is based on an object
representation of each field of an instruction. This allows
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to eradicate early in the process meaningless instructions
and to apply new pruning algorithms. These algorithms used
information available at the function under evaluation.

III. THE FAULT MODEL

There are different possibilities to generate faults in the
hardware either by the natural environment (failure FI) or by
an hostile attacker (security FI). We focus here on intentional
failure by an attacker. In failure studies, the environment
behaves randomly while for security FI, the attacker controls
the fault distribution (time and space) up to its knowledge
of the perturbation means. A fault has three properties, i.e.
location, fault-type and time. Location denotes where the fault
is injected, fault-type denotes which type of fault that is
injected and time denotes when the fault is enabled. Sometime
this last attribute is qualified as injection trigger and fault
latency. Thus, the fault model as a third fault-space dimension
leading to an important amount of potential behavior. If one
fixes a specific fault model, then a two-dimensional fault
space suffices to characterize faults reducing the amount of
runs. Nevertheless, several optimizations are still needed if
one wants to explore the entire space. For the fault type, it
corresponds at the hardware level to a change in a transistor.
At the bit level, we distinguish several types of fault: bit-set,
bit-flip, bit-reset, stuck-at and random-value. It can manifest
as single- or multi-bit faults but also whole byte or burst of
bytes in memory. The memory cell can be part of internal
CPU state, Instruction Set Architecture (ISA) visible CPU
registers, or any other part of the memory hierarchy, including
CPU cache SRAM or main memory DRAM. Fault persistence
is an important fault property of hardware faults that may
occur, vanish, and re-occur in a non-deterministic manner. For
example, if the fault occurs in a cache, it is persistent until
the cache is flushed. FI models have been already discussed
in details in [3], [5].

For this study, we target the ARM architecture which is
widely deployed in Secure Element (SE) but also in a huge
variety of IoT devices and embedded systems. The architecture
(ARMv7-M) has several characteristics that have to be taken
into account. It uses a particular little-endian type based on
the minimal instruction size and not on the maximum size
(Thumb mode). The specific encoding of the first bits (111)
of the instruction specifies if the instruction is coded on 32 bit
or not.

Each instruction of the instruction set can often be repre-
sented by different encoding. An instruction consists in two
parts: the op-code and the fields. The op-code is the part of
the instruction that defines the nature of the instruction and
the fields are an information specific to the instruction, such
as the destination register.

We use the MOV immediate instruction as an example. This
instruction is divided into three different possible encodings
T1, T2 and T3. As shown in Figure 1, each encoding defines
the properties differently. For the T1 encoding, the immediate
value is represented by the eight lower bits of the instruction
and the T3 encoding use the concatenation of four separated

Fig. 1. The MOV encoding instruction

bit sets. For the T1 encoding, the fault model implies two
possibilities either the low byte or the high byte. For T2 and
T3 we have four possibilities. But some of them does not
correspond to a valid instruction and thus must be eradicated.

IV. GENERATION OF THE MUTANTS

Native Mutant Generator’s Application Programming In-
terface (API) is the main part of the tool. It provides dis-
assembling, ELF file extraction, object oriented instruction
representation, Control Flow Graph (CFG) manipulation and
heuristics implementation. The object oriented representation
of the instruction define the mutation either on the instruction
or on its properties such that it generates only valid mutant
instructions. The tool has been designed within three layers:

• The API is in charge of loading an Executable and
Linkable Format (ELF) file, representing all instructions
as objects and executing and executing the mutations;

• The function layer extracts the CFG of the function
and implements heuristics to verify the liveness of the
mutation;

• The front end is in charge of applying the mutation
strategy.

Mutant generation can be applied to the whole .text sec-
tion, to multiple instructions sections or on a single function.

A. The API for instruction mutation

In order to disassemble and analyze the binary file, the tool
knows the structure of each ARM instruction. The fields of
the instructions are made of several data:

• the type (commonly a signed or unsigned integer) and
the boundaries;

• the conditions on its value;
• the way it is stored into the instruction;
• and various other parameters (such as validity, effect on

register, processor behavior).
We reuse the example of the MOV-immediate-T3 in-

struction given Figure 2. The corresponding instruction is a
pattern identified by the name MOV(immediate) T3 and
the bit pattern 11110x100100xxxx0xxxxxxxxxxxxxxx.
The fields (xx elements in the bit pattern) of this instruction are
defined by Rd and imm32. Rd is the destination register and
imm32 the immediate value is obtained by the concatenation
of imm4, i, imm3 and imm8.

IWBIS 2019 978-1-7281-5347-6/19/$31.00 c�2019 IEEE

104



Fig. 2. The MOV T3 fields

The mutation of this instruction is polymorphic according
to the fault model. The verification procedure checks if the
resulting instruction is valid or not. In that case, if the
concatenation of the elements of the fields 0, imm3, Rd
and imm8 is a valid instruction, then the mutant is generated.
In the second case, the instruction remains the same but only
the fields change: destination register is r0 and the immediate
vale becomes the concatenation of imm4, i and 0.

If the fault model is the Single bit flip, then the
mutation for this instruction can replace the instruction by one
having the same fields, change the value of the register Rd or
change the immediate value. For the destination register, the
strategy could affect a living register of the considered function
or a non used register which leads to a side effect outside
the scope of the function. This is the case if the register is
read after the execution of the function but not write. The last
strategy is to use register leading to unpredictable behavior.
Unfortunately this last strategy often generates a run time abort
of the program, according of the used chip.

B. Locally alive registers

For a given function, modifying a register which is not
used has no effect inside the function. Of course, this can
have an effect on the caller. The ARM Application Binary
Interface (ABI) defines the set of register r0-r3 as caller
save register while r4-r11 are callee-save register. Thus,
the compiler generates a specific instruction at the beginning
and at the end of the function according to the registers used.
For example, the instruction stmdb sp!, {r4, r5, r7,
r9 sl, lr} (or a simple push instruction if few registers)
at the function entry. The instruction stmfd sp!, {r4,
r5, r7, r9, sl, lr} (or a simple pop at the exit of
the function. It means that beside the register r0-r3, the
registers r4, r5, r7 and r9 are used in this function. Any
instruction modifying a non alive register in that function is
not generated even if it has a sens outside the function.

C. The immediate value heuristic

By hypothesis, we have both the source code and the binary
code. Modifications are done at the binary level but heuristics
can be also applied at the source level. A first heuristic
concerns the boolean value. This information is available in the
source code using the C type boolean. In secure programming,
boolean are often used as enum type or with a typedef
coded with specific value having the maximum of Hamming
distance (e.g. 0x5555 and 0xAAAA).

Nevertheless, this information remains available whatever
the form a boolean can take. Thus any immediate value in
a field which corresponds to a boolean can be replaced by
three values: the one that characterize true, false and
an arbitrary value corresponding to a fault. We do not yet
implement an integer range analysis to reduce the domain
of the other integer type. This is reserved for future work,
knowing that SE often use byte and short value only.

D. Control flow equivalence

This heuristic uses the observation that a dangerous mutant
is one that does not execute all the paths. In particular in the
SE domain, faults try to avoid security checks. The heuristic
reduces the mutant to only those that have a different control
graph. Thus the control graph of the golden run is known and
compared to the one of the mutant code. If they do not differ,
then the mutant is kept else it is eradicated. This heuristic is
bounded to a function, meaning it has no side effect apart the
selected function. It implies at the instruction level that no
control flow instruction are transformed if possible according
to the fault model to a control flow instruction and vice versa.
For example, consider the instruction to mutate with a T2
encoding ADD<c> SP,SP,#<imm7>, says 1011 + 0000
0xx. If the fault model is Single bit flip, says only
one bit can change then we can transform it into a Compare
and Branch on Zero (CBZ). CBZ is encoded 1011 + 0001
xxx. But it can not be changed to a Compare and Branch on
Non Zero (CBNZ)which requires 2 bits to flip.

E. Pruning the mutants

Each instruction has its own validating function such that a
first round of pruning is done at instruction level. But some
mutations can be valid at the instruction level but useless at
the function level. Smith et al. are among the first concisely
describing the classical def/use analysis technique [6] that was
subsequently reinvented several times, e.g., by Benso et al. [7],
[8].

The basic idea is that all fault locations between a def (a
write) or use (a read) of data in memory, and a subsequent
use, are equivalent regardless of when exactly in this time
frame a fault is injected there. The earliest point where it will
become architecturally visible is when the corrupted data is
read. Moreover, if the fault generates a write instruction
which is followed in the program by a write before a read
then, the fault will have a reduced effect. Instead of conducting
one experiment for every point within this time frame, it
suffices to conduct a single experiment (for example, at the
latest possible time directly before the read), and assume
that all similar faults in the interval will produce the same
outcome. Thus, all those mutants should be killed. Similarly,
all points in time between a read or write and a subsequent
write are known to result in no effect, as the corrupted data
will be overwritten in all cases.

Another useless mutation corresponds to an already checked
mutation. For example, if the instruction MOVE r0, r1,
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r2 is changed into MOVE r0, r0, r0 the second instruc-
tion is a valid instruction and generates a valid mutant. Then,
if a new generation transforms the initial instruction into a
MOVE r1, r1, r1 the resulting mutant is equivalent to the
previous one and it can be pruned.

F. The WWR/RRW heuristic

The WWR and RRW heuristics can be applied on a par-
ticular instruction or in the whole program. In the first case,
the WWR and RRW patterns are checked locally with the
specified instruction. The objective is to verify if a mutation
leads to a pattern, and thus to prune this mutation. The patterns
are therefore checked with the instruction. The algorithm
stores the list of the read and the written memory locations
by this instruction. Each instruction following the original
instruction will be checked. For each instruction, the list of
the read and written memory locations is compared with the
original list.

For instance, if the original instruction I0 reads a memory
location M1 and write on M2 and M3 and the currently
analyzed instruction In read M1 and M2 the program can
deduce the following statements :

• Both I0 and In read on M1, thus there is a RRW pattern
for the memory location M1.

• The mutation does not imply a pattern for the memory
location M2 because I0 writes on M2 and In reads on M2.
Thus, the memory location is removed from the list of
the read and written of I1.

• This instruction does not use M3, the next instruction will
be checked.

G. Known issues

We have some known issues in our implementation of the
new Simfi tool. The first drawback is related to the portability
of the tool. The tool has been designed for one architecture
(ARMv7-M) and the effort to adapt it to another ISA is
not negligible even if we want to extend it to an ARM-V8
architecture. Each instruction model must be redefined, which
represents a huge effort even if the classes corresponding to
the instructions are clearly identified.
The second drawback is related to specific implementations.
The program does not work properly in case of obfuscated
binary due to the disassembling process. Currently, the CFG
cannot handle the half-branching case and this pattern results
with an error when trying to extract the CFG. Indeed, the
support of this type of pattern implies that the program cannot
be represented with a unique list of instructions and that every
byte of the code could be detected many time differently
during the CFG recursive traversal. Currently, our tool works
correctly on non obfuscated programs.

H. Future works

At the function level, more optimizations can be done. We
are working currently on two directions one is a preliminary
analysis, known as domain equivalence, the second one is
related to state equivalence.

1) Integer domain: The idea is to generalize the opti-
mization on the boolean value to byte and short values. A
preliminary pass on the source code can determine the bounds
of value that an integer can use. We envisage to use an abstract
interpretation pass to compute statically approximate but sound
value ranges for program variables. Actually only boolean
values are mutated in instructions. Using such an analysis, we
will be able to evaluate at least one value out of the bounds
or severals according to the different bounds an integer can
have.

2) Fault equivalence: If for two simulations, the machine
state is completely identical to the state of another simulation
at a given instruction location then it will yield to the same fi-
nal state. Then any mutant which after a fault injection reaches
an already seen state can be eradicated. The equivalence can be
either a control equivalence or a data equivalence. The control
equivalence is of a particular importance for SE programs and
is already treated at the instruction level.

This reduction requires the execution of the mutant. The
idea is to check the state of the program after the mutation. If
it has already be visited, then it can be pruned. The state can
be defined by the content of the registers. Taking into account
the memory in the state would be another challenge.

V. EVALUATION

The SimFi tools has only three fault models: Stuck at
zero (byte or word), Stuck at one (byte or word), single
NOP and Single bit flip. The improved version of
SimFi adds the double NOP and Multiple bit flips
for Control Flow equivalence heuristic. The double NOP fault
model corresponds to a fault injected in the pipeline as
published in [10]. The cortex-M3 uses a dual stage pipeline
and a fault can eliminate the two instructions pushed in the
pipeline. This version does not improve the results of the
previous tools for the fault models Stuck at one (word)
and Stuck at zero (word). They do not correspond to a
valid instruction.

The following metrics are related to the example given in
[9] on the control flow hijacking.

For the Stuck at zero (byte) we reduce the number of
mutant by 40% and on the Stuck at one (byte) we reduce
to only 32%.

The dual NOP fault model introduces more vulnerable codes
without generating false mutants. It corresponds to what is
observable on physical fault injection.

The more interesting is the improvement corresponding to
the Single bit flip. We have obtained between 63%
and 84% of mutant reduction. The explanation comes mainly
on the definition of the ARM instruction set. There are
many cases where a bit flip correspond to an Undefined
instruction which corresponds sometime to NOP operation. In
that case, we generate only one mutation for a NOP, the other
are skipped. In other cases, instructions are invalid and we do
not generate them.
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VI. THE BENCH FOR VERIFY THE PREDICTION

Experiments have been performed in our labs within
our fault injection platform. The targeted board is an
STM32VLDISCOVERY board embedding an ARM Cortex-
M3 core. Fault injection is performed with a signal forming
chain consisting in a pulse generator, a signal generator and
a power amplifier. The signal is connected to a home made
probe located on the targeted chip as shown in Figure 3. A
synchronization signal is sent by the targeted chip to the pulse
generator.

Fig. 3. The probe injection

The first step is to experiment on the chosen target hardware
with the chosen hardware fault induction technique. This step
consists of exploring the spacial surface of the target hardware
while manipulating the parameters to induce the fault using
the induction technique. This step requires a lot of time and
expertise, since exploring all the possible combinations of
spacial, temporal, and induction parameters is not feasible in
reasonable time. Once the best spatial alignment is detected
we synchronise the injected fault with the believed vulnerable
point to demonstrate a fault injection vulnerability. Several
physical parameters are to be adjusted to try and detect the
known vulnerability in the loaded program. The three most
important parameters are the power, the duration of the pulse
and it starts. We demonstrated that the predicted effects where
realistic vulnerabilities according to the fault model.

VII. RELATED WORK

There has been much work in the area of fault detection to
predict the impact of hardware faults.

SimPLFIED [11] aims at finding all faults that escape detec-
tion and lead to software faults. It uses a symbolic execution
method to abstract the state of erroneous values in the program.
It injects such a symbolic error at all possible instructions and
uses model checking with the abstract execution technique to
explore all possible paths.

Feng and al. [12] design a static analysis that identifies
instructions where faults are likely to be detected quickly. Such
a fault appears if there is a short path in the dataflow graph
from the fault to a symptom generating instructions. Only
rest of the faults are considered vulnerable and they duplicate
instructions to mitigate the fault.

The Relyzer tool [13] proposes methods to determine when
application-level faults are equivalent, enabling comprehensive
analysis by injecting faults in only one instruction at the binary
level per equivalence class. The fault model is a single bit
fault. They developed several pruning algorithm to reduce the
fault space (Known-outcome pruning technique, def-use anal-
ysis, control equivalence, store-equivalence, bounding branch
targets...).

VIII. CONCLUSION

We try to predict how a fault in the hardware can have
security consequences at the software level. We developed a
complete tool chain than can verify the impact of a EM fault.
The tool is based on the generation of mutants. Unfortunately,
the generation is too basic and leads to too many mutants to
be checked.

In this paper, we present an improvement of the tool
regarding the number of mutants. It is based on a smarter
generation of mutants and pruning heuristics. We evaluate our
solution on some binaries related to security software. We
have improved the initial solution reducing drastically the time
required for the prediction.

Other heuristics can be implemented at function level to
recognize states already evaluated but at a higher cost.
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